
Lecture 9

Augmenting Trees (contd.)
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 1.      r = x . left . size + 1
 2.    if    i == r
 3.        return  x
 4.    else if  i < r
 5.        return  Select(x . left, i)
 6.    else
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Time Complexity:  as with every recursive call algorithm goes one level down.Θ(h) = Θ(log n)
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 1.      r = x . left . size + 1
 2.    y = x
 3.    while y ≠ T . root
 4.        if y = y . p . right
 5.           r =
 6.        y = y . p
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Fix-up phase:

• Fix-ups involve only rotations and recolouring.

• Recolouring doesn’t require changing sizes.

• During rotations size changes are doable in constant time.
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 1) y . size =
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Fix-up phase:

• Fix-ups involve only rotations and recolouring.

• Recolouring doesn’t require changing sizes.

• During rotations size changes are doable in constant time.


