
Lecture 9

Augmenting Trees (contd.)

Finding the Element with th Ranki

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Select : (x, i)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Select : (x, i)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Calculate the rank

of in subtreex (x)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Calculate the rank

of in subtreex (x)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th

rank must be

i
x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th

rank must be

i
x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th rank

must fall in the

left-subtree of

i

x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th rank

must fall in the

left-subtree of

i

x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th rank

must fall in the

left-subtree of

i

x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)
 6. else

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)
 6. else

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th rank

must fall in the

right-subtree of

i

x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)
 6. else
 7. return Select(x . right, i − r)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th rank

must fall in the

right-subtree of

i

x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)
 6. else
 7. return Select(x . right, i − r)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Element with th rank

must fall in the

right-subtree of

i

x

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)
 6. else
 7. return Select(x . right, i − r)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

x

x . rightx . left

Select : (x, i)
 1. r = x . left . size + 1
 2. if i == r
 3. return x
 4. else if i < r
 5. return Select(x . left, i)
 6. else
 7. return Select(x . right, i − r)

Finding the Element with th Ranki
To find the element with th rank in call Select .i T (T . root, i)

Time Complexity: as with every recursive call algorithm goes one level down.Θ(h) = Θ(log n)

x

x . rightx . left

Finding The Rank of an Element

x

rl

Finding The Rank of an Element

x

rl

’s rank in subtree rooted at z r = k

Finding The Rank of an Element

x

rl

’s rank in subtree rooted at z r = k

’s rank in subtree rooted at z x =

Finding The Rank of an Element

x

rl

’s rank in subtree rooted at z r = k

’s rank in subtree rooted at z x = k + l . size +1

Finding The Rank of an Element

x

rl

Finding The Rank of an Element

x

rl

’s rank in subtree rooted at z l = k

Finding The Rank of an Element

x

rl

’s rank in subtree rooted at z l = k

’s rank in subtree rooted at z x =

Finding The Rank of an Element

x

rl

’s rank in subtree rooted at z l = k

’s rank in subtree rooted at z x = k

Finding The Rank of an Element

Finding The Rank of an Element
Example: Find the rank of in the below set or RB-tree. 38

Finding The Rank of an Element
Example: Find the rank of in the below set or RB-tree. 38

Finding The Rank of an Element
Example: Find the rank of in the below set or RB-tree. 38

26
19

14
6

15
1

20
1

41
7

17
11

21
4

10
3

16
2

19
2

28
1

38
3

7
1

12
1

35
1

39
1

47
1

30
5

Finding The Rank of an Element

’s rank in subtree 38 = 2
22
1

26
19

14
6

15
1

20
1

41
7

17
11

21
4

10
3

16
2

19
2

28
1

38
3

7
1

12
1

35
1

39
1

47
1

30
5

Finding The Rank of an Element

’s rank in subtree 38 = 4

22
1

26
19

14
6

15
1

20
1

41
7

17
11

21
4

10
3

16
2

19
2

28
1

38
3

7
1

12
1

35
1

39
1

47
1

30
5

Finding The Rank of an Element
’s rank in subtree 38 = 4

22
1

26
19

14
6

15
1

20
1

41
7

17
11

21
4

10
3

16
2

19
2

28
1

38
3

7
1

12
1

35
1

39
1

47
1

30
5

Finding The Rank of an Element
’s rank in tree 38 = 16

22
1

Finding The Rank of an Element

To find the rank of an element in call Rank .x T (T, x)

Finding The Rank of an Element

Rank : (T, x)

To find the rank of an element in call Rank .x T (T, x)

Finding The Rank of an Element

Rank : (T, x)
 1. r = x . left . size + 1

To find the rank of an element in call Rank .x T (T, x)

Finding The Rank of an Element

Rank : (T, x)
 1. r = x . left . size + 1

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Finding The Rank of an Element

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Finding The Rank of an Element

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Finding The Rank of an Element

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Finding The Rank of an Element

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Finding The Rank of an Element

y . p

y

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Updating ’s rank when is
the right child of its parent.

y y

Finding The Rank of an Element

y . p

y

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right
 5. r =

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Updating ’s rank when is
the right child of its parent.

y y

Finding The Rank of an Element

y . p

y

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right
 5. r =

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Updating ’s rank when is
the right child of its parent.

y y

Finding The Rank of an Element

r + y . p . left . size + 1

y . p

y

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right
 5. r =

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Updating ’s rank when is
the right child of its parent.

y y

Finding The Rank of an Element

r + y . p . left . size + 1

y . p

y

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right
 5. r =
 6. y = y . p

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Updating ’s rank when is
the right child of its parent.

y y

Finding The Rank of an Element

r + y . p . left . size + 1

y . p

y

Rank : (T, x)
 1. r = x . left . size + 1
 2. y = x
 3. while y ≠ T . root
 4. if y = y . p . right
 5. r =
 6. y = y . p
 7. return r

To find the rank of an element in call Rank .x T (T, x)

’s rank within the subtree rooted at x x

Updating ’s rank when is
the right child of its parent.

y y

Finding The Rank of an Element

r + y . p . left . size + 1

y . p

y

Maintaining Subtree Sizes: Insertion

Maintaining Subtree Sizes: Insertion

Insert in this tree15

Maintaining Subtree Sizes: Insertion

13
6

14
1

10
3

16
2

7
1

12
1

Insert in this tree15

Maintaining Subtree Sizes: Insertion

13
6

14
1

10
3

16
2

7
1

12
1

Insert in this tree15

Maintaining Subtree Sizes: Insertion

13
7

14
1

10
3

16
2

7
1

12
1

Insert in this tree15

Maintaining Subtree Sizes: Insertion

13
7

14
1

10
3

16
3

7
1

12
1

Insert in this tree15

Maintaining Subtree Sizes: Insertion

13
7

14
2

10
3

16
3

7
1

12
1

Insert in this tree15

15
1

Maintaining Subtree Sizes: Insertion
Insertion phase:

13
7

14
2

10
3

16
3

7
1

12
1

Insert in this tree15

15
1

Maintaining Subtree Sizes: Insertion
Insertion phase:

13
7

14
2

10
3

16
3

7
1

12
1

Insert in this tree15

15
1

Keep adding to the sizes of every node we visit1

Maintaining Subtree Sizes: Insertion
Insertion phase:

13
7

14
2

10
3

16
3

7
1

12
1

Insert in this tree15

15
1

Keep adding to the sizes of every node we visit1 while searching for the correct leaf

Maintaining Subtree Sizes: Insertion
Insertion phase:

13
7

14
2

10
3

16
3

7
1

12
1

Insert in this tree15

15
1

Keep adding to the sizes of every node we visit1 while searching for the correct leaf

where new node can be inserted.

Maintaining Subtree Sizes: Insertion

Maintaining Subtree Sizes: Insertion

Fix-up phase:

Maintaining Subtree Sizes: Insertion

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

Maintaining Subtree Sizes: Insertion

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

• Recolouring doesn’t require changing sizes.

Maintaining Subtree Sizes: Insertion

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

• Recolouring doesn’t require changing sizes.

• During rotations size changes are doable in constant time.

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

Right-rotate(T, y)

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Left-rotate(T, x)

Maintaining Subtree Sizes: Rotations

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Left-rotate(T, x)

Maintaining Subtree Sizes: Rotations

After Left-rotate , do the following:(T, x)

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Left-rotate(T, x)

Maintaining Subtree Sizes: Rotations

After Left-rotate , do the following:(T, x)
 1) y . size =

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Left-rotate(T, x)

Maintaining Subtree Sizes: Rotations

After Left-rotate , do the following:(T, x)
 1) y . size =
 2) x . size =

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Left-rotate(T, x)

Maintaining Subtree Sizes: Rotations

After Left-rotate , do the following:(T, x)
 1) y . size =
 2) x . size =

x . size

Maintaining subtree sizes during rotations is easy.

x

y

γ

α β

y

x

γ

α

β

Right-rotate(T, y)

Left-rotate(T, x)

Maintaining Subtree Sizes: Rotations

After Left-rotate , do the following:(T, x)
 1) y . size =
 2) x . size =

x . size
x . left . size + x . right . size + 1

Maintaining Subtree Sizes: Deletion

14
6

15
1

20
1

17
11

21
4

10
3

16
2

19
2

7
1

12
1

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

20
1

17
11

21
4

10
3

16
2

19
2

7
1

12
1

Delete in this tree20

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

20
1

17
11

21
4

10
3

16
2

19
2

7
1

12
1

Deletion phase:

Delete in this tree20

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

20
1

17
11

21
4

10
3

16
2

19
2

7
1

12
1

Deletion phase:

Keep subtracting from the sizes of every node from the parent of the removed node to 1

Delete in this tree20

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

20
1

17
11

21
4

10
3

16
2

19
2

7
1

12
1

Deletion phase:

Keep subtracting from the sizes of every node from the parent of the removed node to 1

Delete in this tree20

the root.

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

17
11

21
4

10
3

16
2

19
1

7
1

12
1

Deletion phase:

Delete in this tree20

Keep subtracting from the sizes of every node from the parent of the removed node to 1
the root.

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

17
11

21
3

10
3

16
2

19
1

7
1

12
1

Deletion phase:

Delete in this tree20

Keep subtracting from the sizes of every node from the parent of the removed node to 1
the root.

22
1

Maintaining Subtree Sizes: Deletion

14
6

15
1

17
10

21
3

10
3

16
2

19
1

7
1

12
1

Deletion phase:

Delete in this tree20

Keep subtracting from the sizes of every node from the parent of the removed node to 1
the root.

22
1

Maintaining Subtree Sizes: Deletion

Maintaining Subtree Sizes: Deletion

Fix-up phase:

Maintaining Subtree Sizes: Deletion

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

Maintaining Subtree Sizes: Deletion

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

• Recolouring doesn’t require changing sizes.

Maintaining Subtree Sizes: Deletion

Fix-up phase:

• Fix-ups involve only rotations and recolouring.

• Recolouring doesn’t require changing sizes.

• During rotations size changes are doable in constant time.

